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Abstract This study was aimed to evaluate the effects of low-
level laser therapy (LLLT) in the treatment of trabecular bone
loss induced by skeletal unloading. Twelve mice have taken
denervation operation. At 2 weeks after denervation, LLLT
(wavelength, 660 nm; energy density, 3 J/em®) was applied to
the right tibiae of six mice (LASER) for 5 days/week over
2 weeks by using a minimally invasive laser needle system
(MILNS) which consists of a 100 um optical fiber in a fine
needle (diameter, 130 pm). Structural parameters and histo-
grams of bone mineralization density distribution (BMDD) were
obtained before LLLT and at 2 weeks after LLLT. In addition,
osteocyte, osteoblast, and osteoclast populations were counted.
Two weeks after LLLT, bone volume fraction, trabeculae num-
ber, and trabeculae thickness were significantly increased and
trabecular separations, trabecular bone pattern factor, and struc-
ture model index were significantly decreased in LASER than
SHAM (p<0.05). BMDD in LASER was maintained while that
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in SHAM was shifted to lower mineralization. Osteocyte and
osteoblast populations were significantly increased but osteo-
clast population was significantly decreased in LASER when
compared with those in SHAM (p<0.05). The results indicate
that LLLT with the MILNS may enhance bone quality and bone
homeostasis associated with enhancement of bone formation
and suppression of bone resorption.
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Introduction

Skeletal unloading, such as immobilization and micrograv-
ity, causes a rapid and marked bone loss that is associated
with a malfunction of bone homeostasis (decreased bone
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formation and increased resorption) [1-3]. Although phar-
macological therapies have been widely used to address
such a bone loss, they may induce undesirable side effects
because they do not target a specific site of bone loss [4].
Therefore, nonpharmacological therapies, such as physical
stimulations like whole body vibration, ultrasound stimula-
tion, and laser irradiation have been suggested [5-9].

Several studies showed that laser irradiation has positive
effects on bone regeneration, although the mechanism for
effects of laser on bone is not clear. Previous in vitro studies
have shown that laser irradiation regulates the proliferation and
differentiation of osteoblasts [10—14]. In contrast, laser irradi-
ation reduces the RANKL/OPG mRNA ratio in osteoblasts,
thus indicating inhibition of osteoclast differentiation [14].
Therefore, laser irradiation influences bone homeostasis [15].
Moreover, laser irradiation exhibits biomodulation effects by
improving mitochondrial activity through an increase in the
mitotic process and activation of ATP production [15].

Although several studies have applied a laser irradiation to
treatment of bone loss, the results in animals have remained
controversial. Renno et al. showed the enhancement of
strength in femur of osteopenic animals at 2 months after laser
irradiation (830 nm, 100 W/cm?, 120 J/em?) [6, 7]. Diniz et al.
suggested the possibility of laser therapy (830 nm,
50 mW/cm?, 4 J/cm?) as an adjuvant of bisphosphonate for
the treatment of bone loss [16]. However, Muniz Renno et al.
reported that there was no difference in bone strength and
physical properties of rats with bone loss treated with a com-
bination of laser therapy (830 nm, 100 W/cm?, and 120 J/cm?)
and exercise when compared with rats subjected to exercise
alone [17]. In most of the previous studies, laser was indirectly
irradiated to bone via skin surface. This methodology caused a
considerable loss of laser energy reaching bone during pene-
trating biological tissues by reflection and scattering on the
boundary of different tissues [18-21].

In order to evaluate the effect of laser irradiation on
treatment of bone loss, quantitative study of bone quality,
including bone microarchitecture and bone mineralization
density distribution (BMDD), is required. However, there
were few quantitative studies in which bone quality has
been used as a parameter to investigate the effects of laser
therapy on bone loss. Because material of identical bones is
anisotropic and heterogeneous, the BMDD may be more
effective to investigate bone material properties than bone
mineral density or bone mineral content [1, 22, 23].

This study was aimed to investigate the feasibility of low-
level laser therapy (LLLT) to prevent or treat trabecular
bone loss induced by skeletal unloading. We already devel-
oped a minimally invasive laser needle system (MILNS) and
utilized it to directly irradiate the bone surface percutane-
ously in order to minimize the loss of laser energy reaching
the bone [24]. However, this study focused on the effects on
cortical bone loss, but not the effects of trabecular bone loss.

@ Springer

Furthermore, there were few longitudinal studies for the
effects of a laser irradiation to treatment of bone loss despite
the existing individual difference and/or variability in base-
line values [5, 25-27]. Recently, a microcomputed tomog-
raphy (micro-CT) has been known as “gold standard” for
assessment of bone status [28], and the in vivo micro-CT
has been widely used for longitudinal studies [1, 5, §].
Therefore, in vivo micro-CT was utilized to perform longi-
tudinal studies in microarchitectural properties and BMDD
of trabecular bone. Additionally, quantitative study of the
effects of laser therapy on the population of bone cells,
namely, osteocytes, osteoblasts, and osteoclasts, was per-
formed through histological analysis.

Materials and methods
Animal preparation

All procedures were performed according to a protocol
approved by the Yonsei University of Animal Care Com-
mittee (YWC-P102). Twelve virginal ICR mice (6 weeks
old, 24.2+0.8 g) were used. The mice were housed under
standard conditions (room temperature, 23+2 °C; humidity,
50+10 %) with a 12-h light/dark cycle and allowed to move
freely and feed on standard laboratory food and water ad
libitum. The mice were subjected to sciatic neurectomy
(denervation), which has been one of animal models for
mimicking skeletal unloading [1-3], on the right hind limb
to induce regional bone loss. Bone loss was verified by
alterations in the trabecular bone microarchitecture
(55.0 % decrease in bone volume fraction (BV/TV) after
2 weeks of denervation). The mice were then randomly
allocated to two groups: LLLT treatment group (LASER,;
six mice) and non-LLLT group (SHAM; six mice).

Minimally invasive LLLT

Throughout this study, the MILNS previously developed by
our group was used [24]. Briefly, a 130-pm-diameter fine
needle was used to guide a 100-um-diameter optical fiber. A
diode laser (130 mW, 660 nm; No. ML101J27, ThorLabs,
Newton, NJ) was used as a light source. The laser beam was
collimated by a collimation lens and then focused onto the
optical fiber by an objective lens. At the end of the optical
fiber, the optical fiber jacket was removed and the optical fiber
core was combined with the fine needle. The optical power
output at the end of the fine needle from the diode laser was set
to 10 mW just before the irradiation of the bone. The tibia was
directly irradiated with the laser (660 nm, 10 mW) for 300 s
(energy density, 3 J/cm?). In each mouse in the LASER group,
the right tibia was directly irradiated on bone surface percuta-
neously by the MILNS at 5 mm distance from the proximal
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end of'the tibia; this point was marked before the LLLT and re-
marked every week using a permanent pen. The SHAM was
stimulated by a fine needle without laser. Mice were immobi-
lized by customized restrainer during the LLLT. Mice were
irradiated 5 days/week for 2 weeks.

Structural parameter analysis

Tibiae of mice were scanned before LLLT and 2 weeks after
LLLT with an in vivo micro-CT (Skyscan 1076, SKYSCAN
N.V., Belgium) at a resolution of 18 um® under gas anes-
thesia (O, with 2 % isoflurane).

To investigate the morphological characteristics of tra-
becular bone, structural parameters (bone volume fraction
(BV/TV; in percent), trabeculae thickness (Tb.Th; in milli-
meters), trabecular separations (Tb.Sp; in millimeters), tra-
beculae number (Tb.N; 1/mm), trabecular bone pattern
factor (Tb.Pf, 1/mm), and structure model index (SMI) were
measured from two-dimensional images obtained by CT-AN
1.8.1.4 (SKYSCAN N.V,, Belgium). The volume of interest
of trabecular bone in metaphysis (1.8 mm in length) was
then selected from a 1.8-mm length of bone, located
0.54 mm below the growth plate. In addition, the distribu-
tion of trabecular thickness was calculated. These measure-
ments were followed as previous studies [1, 5, 28].

BMDD analysis

It is very important to correct beam hardening error when
measuring BMDD by in vivo micro-CT [29]. In a present
study, beam hardening effect was corrected by flat-field
correction before animal scanning and using correction
parameters for beam hardening during the reconstruction
procedure. Moreover, a beam filtration may be useful to
reduce or remove the low-energy radiation during scanning
[30]. Histogram of BMDD was calibrated using two phan-
toms (0.25 and 0.75 g/mm®) before measurement. Here, X-
ray attenuation coefficient was represented as mineralization
because the latter was linearly calculated from the former.

Histological analysis

Mice were killed by cervical dislocation 2 weeks after
LLLT. Right tibiaec were extracted, and the other soft tissues
were removed. The tibiae were fixed in 10 % formalin for
3 days. Next, they were decalcified with 10 % ethylene
diamine tetra-acetic acid solution and embedded in paraffin
blocks. Five-micrometer-thick sagittal sections of the tra-
becular in tibiae were then prepared. The sections were
stained with hematoxylin—eosin for osteocyte (1/mm?) and
osteoblast (1/mm) counting. Osteoclast number (1/mm) was
counted on tartrate-resistant acid phosphatase-stained sec-
tions. Methylene blue was used for background staining.

Statistical analysis

The structural parameters were analyzed using a two-way
repeated-measures analysis of variance, with repeated-micro-
CT scanning time as within subject factors (0 and 2 weeks) and
a group as between group factors (LASER vs. SHAM). A
Student’s ¢ test was performed to compare the relative variation
(1 at 0 week) in structural parameters at 2 weeks after treatment
and the number of bone cells between the LLLT and SHAM
groups. All descriptive data are expressed as mean=standard
error. Statistical analyses were carried out using SPSS 12.0
(SPSS Inc., USA). The significance level was set at p<0.05.

Results
Structural parameters

The structural parameters are shown in Table 1. BV/TV and
Tb.N in LASER significantly decreased over time (p<0.05),
whereas Tb.Pf and SMI significantly increased (p<0.05).
However, in SHAM, BV/TV, Tb.Th, and Tb.N significantly
decreased over time (p<0.05), whereas Tb.Sp, Tb.Pf, and
SMI significantly increased (p<0.05). At 2 weeks, there
were significant differences in all structural parameters be-
tween groups (»<0.05); LASER had a higher BV/TV,
Tb.Th, and Tb.N and a lower Tb.Sp, Tb.Pf, and SMI com-
pared with those of SHAM.

To compare the structural parameters between the groups,
relative variations (based on 0 week before LLLT (the value at
2 weeks/that at 0 week and 1 at 0 week) were calculated
(Fig. 1). However, the relative variations for BV/TV and
Tb.N were 3.7- and 3.3-fold higher in LASER than SHAM
(»<0.05), respectively. In LASER, Tb.Th and its distribution
were maintained for 2 weeks (p>0.05, Fig. 2). However, the
percent volumes of thinner trabeculae (0.018~0.088 mm) in-
creased and those of thicker trabeculaec (>0.088 mm) de-
creased over time in SHAM (Fig. 2). Two weeks after
LLLT, the relative variation for Tb.Th was significantly higher
in LASER than SHAM (p<0.05). However, the relative var-
iation for Tb.Sp, Tb.Pf, and SMI was 0.8-, 0.7-, and 0.9-fold
lower in LASER than SHAM (all p<0.05), respectively.

Such differences of structural parameters were shown in
Fig. 3. The trabecular structure in the proximal metaphysis of
tibia in LASER was maintained compared with that in
SHAM, and new bone formation was observed in the LASER.

BMDD
Before LLLT, the two groups showed no difference in the
BMDD (Fig. 4). At 2 weeks after LLLT, the BMDD was

maintained in LASER but shifted to lower mineralization
and slightly narrower in SHAM.
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0.5mm

Fig. 3 Overlaid comparison of overlaid bone structure before and after
minimally invasive LLLT: a LASER and b SHAM (white, 0 week and
red, 2 weeks)

study used the MILNS for the treatment or prevention of
bone loss induced by skeletal unloading.

Skeletal unloading for 2 weeks resulted in significant
bone loss, consistent with previous studies [1-3]. Tibiae
with skeletal unloading-induced bone loss were treated
with a LLLT system. During the experiments, progres-
sive bone loss occurred in both LASER and SHAM.
However, the magnitude or rate of bone loss had a
significant difference between LASER and SHAM. At
2 weeks after LLLT, the decrement rates of BV/TV,
Tb.N, and Tb.Th and the increment rates of Tb.Sp and
Tb.Pf were restrained in LASER when compared with

4
<:++-+ LASER 0 week
= LASER 2 weeks
- ceeeeos SHAM 0 week
£ ———— SHAM 2 weeks
3
-
B
0.00 0.01 0.02 0.03

xX-ray attenuation coeifficient

Fig. 4 Histogram of bone mineralization density distribution in tibiae
trabecular bone

those in SHAM. These results means that the continu-
ous progress of perforation, thinning, and loss of con-
nectivity of bone induced by skeletal unloading might
be diminished by LLLT, suggesting that this treatment
modality might improve trabecular bone microarchitec-
tural properties. Moreover, the BMDD in LASER was
maintained, whereas that in SHAM was shifted to lower
mineralization. These results indicated that LLLT might
enhance bone mineralization and suppress alterations in
bone turnover, thus preventing alterations in bone ho-
meostasis [22, 23]. In addition, these differences in
BMDD might support the above mentioned results of
trabecular bone microarchitectural properties. Bone
structural properties are strongly correlated to the bone
mechanical characteristics [31]. It is also well known
that bone mineralization is one of the important deter-
minant factors that influence bone mechanical character-
istics [23]. The bone stiffness and strength were
decreased at lower mineralization rate while they were
increased at higher mineralization rate [32]. As a result,
these results suggest that the minimally invasive LLLT
with the MILNS might enhance bone qualities such as
bone structural properties and bone mineralization, and
therefore, leads to reduction in fracture risks.

Skeletal unloading induces alterations in osteoblastogen-
esis [33, 34] that results in the reduction of lifespan, number,
and function of osteoblasts [34, 35], and the increased
osteoblast apoptosis [33, 34], leading to decrease in bone
formation. Skeletal unloading also induces osteocyte apo-
ptosis and osteoclast recruitment, resulting in an increase in
bone resorption [36]. These alterations in bone homeostasis
induce a significant bone loss. In this study, a significant
bone loss was confirmed during skeletal unloading. More-
over, we also observe an increase in a degree of bone loss
overtime (55.0 % decrease in BV/TV after 2 weeks of
denervation (before LLLT) and 86.3 % decrease in BV/TV
after 4 weeks of denervation (2 weeks after LLLT)). This
bone loss is consistent with previous studies [1-3]. Osteo-
cytes are the mechanosensory cells of bone [36, 37]. They
also regulate the activities of osteoblasts and osteoclasts,
leading to bone loss or gain according to the external
stimuli [38]. An increase in osteocyte apoptosis, which
occurs after skeletal unloading [36], induces bone loss
and bone fragility [39]. In addition, a previous study
showed that the rate of remodeling was negatively cor-
related with the number of osteocytes, particularly more
number of osteocytes results in suppression of bone
remodeling [40]. Two weeks after LLLT, more osteo-
blasts and osteocytes were observed in LASER than
SHAM. In contrast, the number of osteoclasts was more
in SHAM than LASER. Our results suggest that the
LLLT might effectively prevent osteoblast and osteocyte
apoptosis associated with the suppression of osteoclast
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recruitment, thereby diminishing the progress of bone
loss and fragility. Moreover, the LLLT might suppress
alterations in bone turnover, which was supported by
the result that BMDD was maintained in LASER.

In previous studies, laser was irradiated on skin surface to
treat bone loss. Therefore, this methodology caused a sig-
nificant loss of laser energy in tissue [18—21]. When a
relatively low amount of laser energy reaches bone, laser
irradiation may not positively affect bone healing [18, 41,
42]. Although some studies have suggested the use of high-
intensity laser in order to overcome this limitation [7, 18],
serious biological tissue damage has been induced [43, 44].
In this study, the MILNS was directly applied in order to
overcome these limitations of previous studies. Even if the
bone was irradiated with a low-intensity laser (3 J/cm?® of

@ Springer

energy density) for a short duration (300 s), an effective
prevention of bone loss was achieved.

Conclusions

This study suggested that the laser therapy, particularly
using the MILNS, diminished the continuous progress of
bone loss and weakness through the enhancement of bone
qualities and bone homeostasis. Therefore, the laser therapy
may contribute to a reduction of fracture risk due to bone
loss. To the best of our knowledge, this study may prove
valuable as the first trial to investigate the effects of LLLT
with the MILNS on the prevention and treatment of trabec-
ular bone loss induced by skeletal unloading.
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